Содержание
Исследования Марианской впадины — РИА Новости, 23.01.2020
https://ria.ru/20200123/1563663972.html
Исследования Марианской впадины
Исследования Марианской впадины — РИА Новости, 23.01.2020
Исследования Марианской впадины
Марианская впадина (Марианский желоб) – узкая депрессия (ложбина) на дне Тихого океана (в его западной части), самая глубокая в мире. Она протянулась вдоль… РИА Новости, 23.01.2020
2020-01-23T04:13
2020-01-23T04:13
2020-01-23T04:13
справки
федор конюхов
джеймс кэмерон
тихий океан
/html/head/meta[@name=’og:title’]/@content
/html/head/meta[@name=’og:description’]/@content
https://cdnn21.img.ria.ru/images/156366/52/1563665242_0:0:1920:1080_1920x0_80_0_0_a1ad90930cccaf1952c0da38636e8f18.jpg
Марианская впадина (Марианский желоб) – узкая депрессия (ложбина) на дне Тихого океана (в его западной части), самая глубокая в мире. Она протянулась вдоль Марианских островов на 1340 километров, имеет V-oбразный профиль и крутые асимметричные склоны. Островной склон выше и круче океанического, расчленен каньонами и осложнен ступенями. Марианская впадина имеет плоское дно шириной 1-5 километров, разделенное порогами на несколько замкнутых участков с глубиной 8-11 километров. Океанический склон и дно покрыты маломощным (до 200 метров) слоем осадков. От ложа океана впадина отделена валом, на котором находится много подводных вулканических гор. Давление воды у дна достигает 108,6 мегапаскаля (1100 атмосфер), что более чем в 1100 раз больше нормального атмосферного давления на уровне поверхности Мирового океана. Марианская впадина находится на стыке двух литосферных плит. Вдоль ее оси происходит поддвиг Тихоокеанской литосферной плиты под Филиппинскую. Характерна высокая сейсмичность.Марианская впадина была обнаружена в 1875 году британской экспедицией, проводившей первые системные промеры глубин в Тихом океане на океанографическом судне «Челленджер», переоборудованном в 1872 году для проведения гидрологических, геологических, геохимических, биологических и метеорологических исследований из трехмачтового военного корвета. Измерения лотом, опускаемым на пеньковом тросе с борта этого судна, показали глубину 8 184 метра, но эти данные неоднократно уточнялись. В 1899 году с борта американского судна «Неро» тем же способом была измерена глубина 9 636 метров. Первые оценки глубин в районе Марианской впадины с помощью эхолотов были получены в 1925-1931 годах с японских судов «Мансуи», «Косуи» и «Иодо». Максимальная глубина, определенная в этот период, – 9 814 метров.В 1951 году новое английское гидрографическое судно «Челленджер», унаследовавшее название известного исследовательского корвета, произвело ряд измерений глубин Марианской впадины. При этом использовался усовершенствованный ультразвуковой эхолот, при помощи которого была измерена новая максимальная глубина Марианской впадины – 10 863 метра. Судном было выполнено также несколько тросовых измерений глубин, причем максимальная измеренная глубина была 10 830 метров. При помощи трубочного лота с глубины 10 504 метра была получена проба грунта (коричневого ила). Его анализ показал, что в иле содержится большое количество радиолярий (одноклеточные планктонные организмы) и диатомовых водорослей (одноклеточные водоросли, отличающиеся наличием у клеток своеобразного «панциря», состоящего из диоксида кремния), а также следы вулканической пыли.Самая глубокая точка в Марианской впадине находится на западе Тихоокеанского бассейна. Она располагается в 1,8 тысячи километрах от Филиппин в юго-западной стороне впадины. Это место получило название Бездна Челленджера (Challenger Deep). Максимальную за всю историю глубину в этом месте измерили в 1957 году с советского научно-исследовательского судна «Витязь». Она составила 11 022 метра, однако позднее выяснилось, что ученые при снятии показаний не учли смену условий среды на разных глубинах. На разных глубинах очень сильно отличаются температура, и это требует сложного пересчета показаний приборов. Максимальная глубина Марианской впадины в 1984 году была уточнена японскими гидрографами. Она составила 10 924 метра. Экспедиции «Витязя» сыграли большую роль в исследовании глубоководной фауны в Марианской впадине. В 1958 и 1975 годах в результате тралений в ней на борт судна подняли 24 вида животных, 10 из которых впервые были описаны учеными Института океанологии им. П.П. Ширшова.Первое погружение человека на дно Марианской впадины было совершено 23 января 1960 года лейтенантом Военно-Морских Сил США Доном Уолшем (Don Walsh) и швейцарским исследователем Жаком Пиккаром (Jacques Piccard) на батискафе Trieste. Они достигли глубины 10 916 метров, измерили температуру и радиоактивность воды и обнаружили в ее толще живые организмы. Батискаф провел на дне 20 минут, а все погружение продолжалось около девяти часов. После этого только в 1995 году японский подводный аппарат с дистанционным управлением Kaiko опустился на дно Марианской впадины в месте, имеющем глубину 10 911 метров. В дальнейшем этот аппарат использовался главным образом для биологических исследований в Марианской впадине. В ходе них в 2002 году было обнаружено множество видов неведомых науке одноклеточных организмов, существующих в неизменном виде почти миллиард лет. В 2009 году на дно впадины опускался гибридный (автономно-привязной) аппарат Nereus, созданный в США усилиями нескольких организаций. Он впервые произвел фото- и видеосъемку, были проведены локальные измерения гидрофизических и гидрохимических параметров, взяты пробы грунта. Аппарат также захватил несколько обитателей рекордных глубин. Это позволило ученым обнаружить колонии «автономных» бактерий на самом дне Марианской впадины. С августа по октябрь 2010 года американская океанографическая экспедиция провела съемку участка дна Мариинской впадины площадью около 400 тысяч квадратных километров с помощью многолучевого эхолота, работавшего с разрешением не более 100 метров. Эти исследования помогли ученым впервые создать точную карту и трехмерную модель рельефа дна впадины. В результате они обнаружили четыре хребта высотой до 2,5 километра, которые пересекают Мариинский желоб. По мнению ученых, хребты сформировались около 180 миллионов лет назад в процессе постоянного движения литосферных плит. В ходе «подползания» краевой части Тихоокеанской плиты, как более старой и «тяжелой», под Филиппинскую образуется складчатость из-за того, что более плотные породы «сопротивляются» этому процессу и формируют «складки», вздымаясь в виде гор поблизости от границы литосферных плит. Экспедиция также уточнила параметры самой глубокой точки Марианской впадины. Новые измерения «углубили» ее на 23 метра (10 994 метра против 10 971 метра по данным 2009 года). Однако ученые подчеркивают, что можно гарантировать точность в пределах до 40 метров.В 2012 году канадский режиссер Джеймс Кэмерон погрузился в Марианскую впадину на глубоководном аппарате, разработанном его собственной командой. Строительство двенадцатитонного Deepsea Challenge обошлось примерно в семь миллионов долларов. Экспедиция готовилась около семи лет, в конструкторских разработках и планировании научной программы принимали участие Институт океанографии имени Скриппса (США), Лаборатория реактивного движения НАСА и Университет штата Гавайи. Погружение продолжалось почти семь часов. Кэмерон провел в «Бездне Челленджера» около шести часов, в течение которых вел видеосъемки подводного мира. Из-за неисправности одной из металлических «рук», управляющихся гидравликой, он не смог отобрать образцы, необходимые ученым для изучения геологии дна. Джеймс Кэмерон стал третьим человеком в истории, достигшим самой глубокой точки Мирового океана, и первым, сделавшим это в одиночку.В последующие годы китайские и американские исследователи изучали глубоководную фауну Мариинской впадины с помощью подводных аппаратов. Помимо различных спускаемых аппаратов, ученые активно изучают Марианскую впадину при помощи сейсмографов, установленных на дне океана в ее окрестностях, а также на соседних островах. Изучение структуры дна Марианской впадины помогло геологам вычислить примерное количество воды в недрах Земли. Как оказалось, пласт «тонущей» коры под Марианской впадиной почти полностью уходил в глубинные слои мантии Земли, сохраняя свою структуру даже на глубинах в 50-60 километров. Это, в свою очередь, означает, что в недра планеты попадает значительно больше морских горных пород, богатых водой и ее соединениями, чем считалось раньше. По оценкам ученых, Марианская впадина «закачала» свыше 79 миллионов тонн воды в глубинные слои мантии Земли за последний миллион лет, что примерно в 3-4 раза выше предыдущих оценок, вычисленным по данным наблюдений за менее глубокими и крупными желобами. В 2019 году в рамках экспедиции Five Deeps американский исследователь Виктор Весково совершил три спуска в районе Марианского желоба. В один из них подводная лодка Весково DSV Limiting Factor за 3,5-4 часа достигла глубины в 10 927 метров. Исследователь установил рекорд по одиночному погружению. Во время погружения ему удалось обнаружить четыре новых вида ракообразных, а также на дне Бездны Челленджера он нашел пластиковый пакет и обертки от конфет, что свидетельствует о загрязнении Мирового океана. Российский путешественник Федор Конюхов также собирается опуститься на дно Марианской впадины на батискафе, который для него построит Объединенная судостроительная корпорация (ОСК). В июне 2019 года стало известно, что ОСК начала проектирование аппарата для погружения, готовит прототип.Материал подготовлен на основе информации РИА Новости и открытых источников
тихий океан
РИА Новости
1
5
4.7
96
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
2020
РИА Новости
1
5
4.7
96
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
Новости
ru-RU
https://ria.ru/docs/about/copyright.html
https://xn--c1acbl2abdlkab1og.xn--p1ai/
РИА Новости
1
5
4.7
96
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
1920
1080
true
1920
1440
true
https://cdnn21. img.ria.ru/images/156366/52/1563665242_272:0:1712:1080_1920x0_80_0_0_cd424c89d8d6aa950f13538eed3d95d1.jpg
1920
1920
true
РИА Новости
1
5
4.7
96
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
РИА Новости
1
5
4.7
96
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
справки, федор конюхов, джеймс кэмерон, тихий океан
Справки, Федор Конюхов, Джеймс Кэмерон, Тихий океан
Марианская впадина (Марианский желоб) – узкая депрессия (ложбина) на дне Тихого океана (в его западной части), самая глубокая в мире. Она протянулась вдоль Марианских островов на 1340 километров, имеет V-oбразный профиль и крутые асимметричные склоны. Островной склон выше и круче океанического, расчленен каньонами и осложнен ступенями. Марианская впадина имеет плоское дно шириной 1-5 километров, разделенное порогами на несколько замкнутых участков с глубиной 8-11 километров. Океанический склон и дно покрыты маломощным (до 200 метров) слоем осадков. От ложа океана впадина отделена валом, на котором находится много подводных вулканических гор.
Давление воды у дна достигает 108,6 мегапаскаля (1100 атмосфер), что более чем в 1100 раз больше нормального атмосферного давления на уровне поверхности Мирового океана.
Марианская впадина находится на стыке двух литосферных плит. Вдоль ее оси происходит поддвиг Тихоокеанской литосферной плиты под Филиппинскую. Характерна высокая сейсмичность.
Марианская впадина была обнаружена в 1875 году британской экспедицией, проводившей первые системные промеры глубин в Тихом океане на океанографическом судне «Челленджер», переоборудованном в 1872 году для проведения гидрологических, геологических, геохимических, биологических и метеорологических исследований из трехмачтового военного корвета. Измерения лотом, опускаемым на пеньковом тросе с борта этого судна, показали глубину 8 184 метра, но эти данные неоднократно уточнялись. В 1899 году с борта американского судна «Неро» тем же способом была измерена глубина 9 636 метров.
Первые оценки глубин в районе Марианской впадины с помощью эхолотов были получены в 1925-1931 годах с японских судов «Мансуи», «Косуи» и «Иодо». Максимальная глубина, определенная в этот период, – 9 814 метров.
В 1951 году новое английское гидрографическое судно «Челленджер», унаследовавшее название известного исследовательского корвета, произвело ряд измерений глубин Марианской впадины. При этом использовался усовершенствованный ультразвуковой эхолот, при помощи которого была измерена новая максимальная глубина Марианской впадины – 10 863 метра. Судном было выполнено также несколько тросовых измерений глубин, причем максимальная измеренная глубина была 10 830 метров. При помощи трубочного лота с глубины 10 504 метра была получена проба грунта (коричневого ила). Его анализ показал, что в иле содержится большое количество радиолярий (одноклеточные планктонные организмы) и диатомовых водорослей (одноклеточные водоросли, отличающиеся наличием у клеток своеобразного «панциря», состоящего из диоксида кремния), а также следы вулканической пыли.
Самая глубокая точка в Марианской впадине находится на западе Тихоокеанского бассейна. Она располагается в 1,8 тысячи километрах от Филиппин в юго-западной стороне впадины. Это место получило название Бездна Челленджера (Challenger Deep).
Максимальную за всю историю глубину в этом месте измерили в 1957 году с советского научно-исследовательского судна «Витязь». Она составила 11 022 метра, однако позднее выяснилось, что ученые при снятии показаний не учли смену условий среды на разных глубинах. На разных глубинах очень сильно отличаются температура, и это требует сложного пересчета показаний приборов.
Максимальная глубина Марианской впадины в 1984 году была уточнена японскими гидрографами. Она составила 10 924 метра.
Экспедиции «Витязя» сыграли большую роль в исследовании глубоководной фауны в Марианской впадине. В 1958 и 1975 годах в результате тралений в ней на борт судна подняли 24 вида животных, 10 из которых впервые были описаны учеными Института океанологии им. П.П. Ширшова.
Первое погружение человека на дно Марианской впадины было совершено 23 января 1960 года лейтенантом Военно-Морских Сил США Доном Уолшем (Don Walsh) и швейцарским исследователем Жаком Пиккаром (Jacques Piccard) на батискафе Trieste. Они достигли глубины 10 916 метров, измерили температуру и радиоактивность воды и обнаружили в ее толще живые организмы. Батискаф провел на дне 20 минут, а все погружение продолжалось около девяти часов.
После этого только в 1995 году японский подводный аппарат с дистанционным управлением Kaiko опустился на дно Марианской впадины в месте, имеющем глубину 10 911 метров. В дальнейшем этот аппарат использовался главным образом для биологических исследований в Марианской впадине. В ходе них в 2002 году было обнаружено множество видов неведомых науке одноклеточных организмов, существующих в неизменном виде почти миллиард лет.
В 2009 году на дно впадины опускался гибридный (автономно-привязной) аппарат Nereus, созданный в США усилиями нескольких организаций. Он впервые произвел фото- и видеосъемку, были проведены локальные измерения гидрофизических и гидрохимических параметров, взяты пробы грунта. Аппарат также захватил несколько обитателей рекордных глубин. Это позволило ученым обнаружить колонии «автономных» бактерий на самом дне Марианской впадины.
С августа по октябрь 2010 года американская океанографическая экспедиция провела съемку участка дна Мариинской впадины площадью около 400 тысяч квадратных километров с помощью многолучевого эхолота, работавшего с разрешением не более 100 метров. Эти исследования помогли ученым впервые создать точную карту и трехмерную модель рельефа дна впадины. В результате они обнаружили четыре хребта высотой до 2,5 километра, которые пересекают Мариинский желоб. По мнению ученых, хребты сформировались около 180 миллионов лет назад в процессе постоянного движения литосферных плит. В ходе «подползания» краевой части Тихоокеанской плиты, как более старой и «тяжелой», под Филиппинскую образуется складчатость из-за того, что более плотные породы «сопротивляются» этому процессу и формируют «складки», вздымаясь в виде гор поблизости от границы литосферных плит.
Экспедиция также уточнила параметры самой глубокой точки Марианской впадины. Новые измерения «углубили» ее на 23 метра (10 994 метра против 10 971 метра по данным 2009 года). Однако ученые подчеркивают, что можно гарантировать точность в пределах до 40 метров.
В 2012 году канадский режиссер Джеймс Кэмерон погрузился в Марианскую впадину на глубоководном аппарате, разработанном его собственной командой. Строительство двенадцатитонного Deepsea Challenge обошлось примерно в семь миллионов долларов. Экспедиция готовилась около семи лет, в конструкторских разработках и планировании научной программы принимали участие Институт океанографии имени Скриппса (США), Лаборатория реактивного движения НАСА и Университет штата Гавайи.
Погружение продолжалось почти семь часов. Кэмерон провел в «Бездне Челленджера» около шести часов, в течение которых вел видеосъемки подводного мира. Из-за неисправности одной из металлических «рук», управляющихся гидравликой, он не смог отобрать образцы, необходимые ученым для изучения геологии дна. Джеймс Кэмерон стал третьим человеком в истории, достигшим самой глубокой точки Мирового океана, и первым, сделавшим это в одиночку.
В последующие годы китайские и американские исследователи изучали глубоководную фауну Мариинской впадины с помощью подводных аппаратов.
Помимо различных спускаемых аппаратов, ученые активно изучают Марианскую впадину при помощи сейсмографов, установленных на дне океана в ее окрестностях, а также на соседних островах. Изучение структуры дна Марианской впадины помогло геологам вычислить примерное количество воды в недрах Земли. Как оказалось, пласт «тонущей» коры под Марианской впадиной почти полностью уходил в глубинные слои мантии Земли, сохраняя свою структуру даже на глубинах в 50-60 километров. Это, в свою очередь, означает, что в недра планеты попадает значительно больше морских горных пород, богатых водой и ее соединениями, чем считалось раньше. По оценкам ученых, Марианская впадина «закачала» свыше 79 миллионов тонн воды в глубинные слои мантии Земли за последний миллион лет, что примерно в 3-4 раза выше предыдущих оценок, вычисленным по данным наблюдений за менее глубокими и крупными желобами.
В 2019 году в рамках экспедиции Five Deeps американский исследователь Виктор Весково совершил три спуска в районе Марианского желоба. В один из них подводная лодка Весково DSV Limiting Factor за 3,5-4 часа достигла глубины в 10 927 метров. Исследователь установил рекорд по одиночному погружению. Во время погружения ему удалось обнаружить четыре новых вида ракообразных, а также на дне Бездны Челленджера он нашел пластиковый пакет и обертки от конфет, что свидетельствует о загрязнении Мирового океана.
Российский путешественник Федор Конюхов также собирается опуститься на дно Марианской впадины на батискафе, который для него построит Объединенная судостроительная корпорация (ОСК). В июне 2019 года стало известно, что ОСК начала проектирование аппарата для погружения, готовит прототип.
Материал подготовлен на основе информации РИА Новости и открытых источников
Монстры Марианской впадины. Существа, способные жить на огромной глубине
https://ria.ru/20190922/1558947916.html
Монстры Марианской впадины. Существа, способные жить на огромной глубине
Монстры Марианской впадины. Существа, способные жить на огромной глубине — РИА Новости, 22.09.2019
Монстры Марианской впадины. Существа, способные жить на огромной глубине
Китайские ученые расшифровали геном лучеперой рыбы, обитающей в самом глубоком месте Мирового океана — Марианском желобе. Чтобы выдерживать давление, в сотни… РИА Новости, 22.09.2019
2019-09-22T08:00
2019-09-22T08:00
2019-09-22T07:59
наука
пуэрто-рико
триест
джеймс кэмерон
открытия — риа наука
тихий океан
/html/head/meta[@name=’og:title’]/@content
/html/head/meta[@name=’og:description’]/@content
https://cdnn21. img.ria.ru/images/155894/84/1558948473_0:305:2547:1738_1920x0_80_0_0_e7adb18df8118d3ffd2fb1c51f4e4769.jpg
МОСКВА, 22 сен — РИА Новости, Татьяна Пичугина. Китайские ученые расшифровали геном лучеперой рыбы, обитающей в самом глубоком месте Мирового океана — Марианском желобе. Чтобы выдерживать давление, в сотни раз превышающее атмосферное, и полное отсутствие света, ее организм претерпел несколько серьезных изменений на генном уровне за довольно короткое время. Последние экспедиции показали, что в этой бездне живут и даже процветают множество существ.Легенда о плоской рыбеГлубоководные желоба были изучены (а многие открыты) в начале 1950-х годов советским судном «Витязь» и датской «Галатеей». Самое глубокое место на планете — Бездна Челленджера в Марианской впадине. До сих пор львиная доля информации, полученная оттуда, принадлежит экспедициям более чем полувековой давности.В 1960 году швейцарский батискаф «Триест» впервые опустился на дно Бездны Челленджера. «Прямо под нами внизу лежало нечто вроде плоской рыбы, напоминающей камбалу. <…> У нее было два круглых глаза сверху. <…> Она двигалась по дну в слизи и воде и исчезла в ночи», — так красочно описывал свои впечатления океанолог Жан Пикар, пилот «Триеста».Ученые сразу усомнились в этом свидетельстве, тем более что на борту не было фотокамер. Однако журналистам образ «плоской рыбы Триеста» очень понравился и они многие десятилетия занимали им воображение широкой публики. Были введены в заблуждение даже некоторые профессора.Легенда о плоской рыбе вновь всплыла в 2012 году благодаря рискованному предприятию режиссера Джеймса Кэмерона — третьего человека в мире, видевшего дно Бездны Челленджера из глубоководного батискафа. Сам Кэмерон, как и участники предыдущих экспедиций, плоских рыб там не заметил. Не обнаружили их японцы, американцы и китайцы, ставившие ловушки на дне Марианской впадины. Да и второй пилот «Триеста» Дон Уолш впоследствии не так уверенно говорил об увиденном.В статье 2012 года английский океанолог из Университета Абердина Алан Джемисон окончательно развенчал миф о «плоской рыбе Триеста». Во-первых, точно известно, что реальные плоские рыбы, такие как скат или камбала, живут на мелководье. Во-вторых, маловероятно, чтобы батискаф опустился прямо на рыбу: согласно статистике ловушек, с глубиной среднее время прибытия первой рыбы к ним увеличивается и достигает десяти часов на почти 11 километрах. «Триест» пробыл на дне 20 минут, и ловушек с наживкой у него не было.Главный же аргумент против — слишком сильное гидростатическое давление. По-видимому, оно делает невозможным обитание рыб на глубине свыше 8,5 километра. Но чтобы существовать даже на этой отметке, как выяснилось, нужно значительно поменять организм.Псевдолипарис устанавливает рекордДолгое время самыми глубоководными считались ошибневые рыбы из класса лучеперых. Их вид Holcomycteronus profundissimus вылавливали с шести километров. В 1970-е рекорд был побит глубоководной бротулой (Abyssobrotula galatheae) из того же семейства, выловленной в океаническом желобе Пуэрто-Рико на отметке 8370 метров. Однако уже упомянутый Джемисон засомневался и в этом. По данным регистра рыб, есть 17 образцов этого вида бротулы, из которых только два добыты на большой глубине, так что возможна ошибка и самое глубоководное позвоночное существо еще предстоит открыть.Пока же рекордсменом считается марианский морской слизень Pseudoliparis swirei. В 2013 году его поймали китайские исследователи при тестовом спуске батискафа на глубину семь километров. В 2017-м американцы подняли несколько десятков этих рыб с глубины 8178 метров.Это небольшие рыбки длиной до 28 сантиметров, весом не более 200 граммов. У них прозрачная кожа, покрытая слизью, через которую просвечивают внутренние органы, на голове два маленьких черных глаза. Они абсолютно слепы и не реагируют на подсветку ловушек.Этот вид псевдолипарисов стоит на вершине пищевой цепочки глубоководной части Марианской впадины, у него нет врагов, а еды в избытке, ведь на дне водится множество рачков.Компанию псевдолипарисам на глубине составляют несколько видов рыб из семейств бельдюговых, ошибневых и долгохвостов. Ученые обнаружили глубоководные мутацииВсе больше данных о том, что к обитанию на большой глубине — без света, в холоде — организм должен быть особым образом приспособлен. Новейшие методы исследования генома позволили ученым приоткрыть здесь завесу тайны.Например, оказалось, что с глубиной в тканях костных рыб увеличивается количество триметиламиноксида — простого органического соединения, помогающего клетке не потерять форму и справиться с внешним давлением. Такие вещества называют осмолитами.Есть также данные о том, что клеточные белки из-за большого давления теряют форму, а это смертельно для живых существ. Значит, должен быть механизм, не допускающий этого. Так появилась гипотеза о пьезолитах — растворимых веществах, удерживающих форму белков или даже собирающих их вновь, если они разрушились.В недавней статье в Nature китайские ученые представили результаты расшифровки генома марианского псевдолипариса и сравнили его с геномом обычного липариса Танака. Два вида разошлись примерно 20 миллионов лет назад. Генофонд глубоководной рыбы оказался более разнообразным, причем примерно 55 тысяч лет назад их популяция резко разрослась. Сам же геном на 22 процента больше генома липариса Танаки и содержит меньше мутаций.Одна из главных особенностей — низкая скорость метаболизма у псевдолипарисов, они буквально медленно живут. Их самки производят меньше икры, но зато она более крупная.У марианского псевдолипариса не весь скелет окостеневший, по большей части он из хрящей. Вероятно, это вызвано мутацией гена Gla, досрочно прекращающего кальцинирование костей.Выяснилось, что рыбы потеряли несколько важных фоторецепторов. Они не различают цвета и не улавливают свет. Они утратили ген пигментации mc1r, вот почему они бесцветны — окраска для них теперь лишнее.Несколько мутаций помогли им улучшить метаболизм жирных кислот. У псевдолипарисов обнаружилось 15 копий гена acaa1, регулирующего синтез докозагексаеновой кислоты — одной из омега-3 жирных кислот. Есть мутации в генах tfa и slc29a3, отвечающих за перенос ионов и растворов из клетки. Все это явно направлено на то, чтобы сделать липидные мембраны клеток более эластичными и проницаемыми.Возможно, некоторые мутации у псевдолипариса увеличивают синтез триметиламиноксида в тканях для сохранения формы белков. Ученые обнаружили еще одно странное отличие — в гене hsp90 произошла замена аминокислот, причем на очень консервативном участке, который неизменен у человека, мышей и даже дрожжей. Этот ген отвечает за синтез высокомолекулярного шаперона, который, в свою очередь, участвует в свертке более двух сотен белков, важных для клеточных процессов. Что делает эта мутация, пока неизвестно.Авторы работы отмечают, что марианским псевдолипарисам пришлось адаптироваться к новым условиям жизни всего за несколько миллионов лет. Для эволюции позвоночных это малый срок.Наше новое место обитания?Марианская впадина населена многочисленными видами беспозвоночных животных, бактерий, грибков, вирусов. К примеру, на глубине свыше пяти километров там обитают морские звезды вида Freyastera benthophila. Китайские ученые расшифровали геном в их митохондриях — это кольцеобразная ДНК, состоящая всего из нескольких десятков генов. Зато много ее копий в каждой клетке организма. В целом он оказался похожим на митогеном других морских звезд с некоторыми исключениями, которые еще ждут своего объяснения.Изучен также митогеном бокоплава — крошечного рачка, поднятого с глубины почти 11 километров. Этот вид появился 109 миллионов лет назад и эволюционировал медленно. За время обитания на глубине у него в митохондриальном гене обнаружено всего несколько особенностей, таких же, как у других глубоководных видов (в частности, совершенно другая компоновка генов в ДНК).Еще одно открытие — на дне Бездны Челленджера обнаружилась колония бактерий, поедающих углеводороды. Причем плотность их населения там больше, чем где бы то ни было на Земле. Это организмы родов Oleibacter, Thalassolituus и Alcanivorax. Они есть и на поверхности, и тоже питаются углеводородами. Вопрос в том, откуда органика на такой глубине. Ученые полагают, что она не осела с поверхности, а произведена какой-то другой группой еще не известных науке глубоководных микроорганизмов.Марианский желоб образован в результате тектонических процессов. В этом месте большая Тихоокеанская плита земной коры «ныряет» под небольшую Марианскую плиту, образуя впадину длиной 2550 и шириной 70 километров. Здесь очень высокая сейсмичность, а пищевые ресурсы и условия обитания резко отличаются от менее глубоких зон. Неизвестно даже, есть ли там сезоны года.Мы очень мало знаем о Мировом океане, а его глубоководные части, по сути, только начали исследовать. Но пришло время делать это активнее, учитывая, что в перспективе маячит глобальное потепление климата и на поверхности через пару веков может оказаться слишком жарко.
https://ria.ru/20190324/1552040469.html
https://ria.ru/20181115/1532866683.html
https://ria.ru/20160621/1449538729.html
пуэрто-рико
триест
тихий океан
РИА Новости
1
5
4. 7
96
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
2019
РИА Новости
1
5
4.7
96
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
Новости
ru-RU
https://ria.ru/docs/about/copyright.html
https://xn--c1acbl2abdlkab1og.xn--p1ai/
РИА Новости
1
5
4.7
96
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
1920
1080
true
1920
1440
true
https://cdnn21.img.ria.ru/images/155894/84/1558948473_0:137:2547:2047_1920x0_80_0_0_966bceb03bf3fc861e17b25f85b3078a.jpg
1920
1920
true
РИА Новости
1
5
4.7
96
internet-group@rian. ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
РИА Новости
1
5
4.7
96
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
пуэрто-рико, триест, джеймс кэмерон, открытия — риа наука, тихий океан
Наука, Пуэрто-Рико, Триест, Джеймс Кэмерон, Открытия — РИА Наука, Тихий океан
МОСКВА, 22 сен — РИА Новости, Татьяна Пичугина. Китайские ученые расшифровали геном лучеперой рыбы, обитающей в самом глубоком месте Мирового океана — Марианском желобе. Чтобы выдерживать давление, в сотни раз превышающее атмосферное, и полное отсутствие света, ее организм претерпел несколько серьезных изменений на генном уровне за довольно короткое время. Последние экспедиции показали, что в этой бездне живут и даже процветают множество существ.
Легенда о плоской рыбе
Глубоководные желоба были изучены (а многие открыты) в начале 1950-х годов советским судном «Витязь» и датской «Галатеей». Самое глубокое место на планете — Бездна Челленджера в Марианской впадине. До сих пор львиная доля информации, полученная оттуда, принадлежит экспедициям более чем полувековой давности.
В 1960 году швейцарский батискаф «Триест» впервые опустился на дно Бездны Челленджера. «Прямо под нами внизу лежало нечто вроде плоской рыбы, напоминающей камбалу. <…> У нее было два круглых глаза сверху. <…> Она двигалась по дну в слизи и воде и исчезла в ночи», — так красочно описывал свои впечатления океанолог Жан Пикар, пилот «Триеста».
Ученые сразу усомнились в этом свидетельстве, тем более что на борту не было фотокамер. Однако журналистам образ «плоской рыбы Триеста» очень понравился и они многие десятилетия занимали им воображение широкой публики. Были введены в заблуждение даже некоторые профессора.
CC BY-SA 4.0 / Hellerick, Kun Wang, Yanjun Shen, […]Shunping He. Nature Ecology & Evolution (2019) / Марианская впадина расположена в Тихом океане. Ее предельная глубина — 10,9 км
CC BY-SA 4. 0 / Hellerick, Kun Wang, Yanjun Shen, […]Shunping He. Nature Ecology & Evolution (2019) /
Марианская впадина расположена в Тихом океане. Ее предельная глубина — 10,9 км
Легенда о плоской рыбе вновь всплыла в 2012 году благодаря рискованному предприятию режиссера Джеймса Кэмерона — третьего человека в мире, видевшего дно Бездны Челленджера из глубоководного батискафа. Сам Кэмерон, как и участники предыдущих экспедиций, плоских рыб там не заметил. Не обнаружили их японцы, американцы и китайцы, ставившие ловушки на дне Марианской впадины. Да и второй пилот «Триеста» Дон Уолш впоследствии не так уверенно говорил об увиденном.
В статье 2012 года английский океанолог из Университета Абердина Алан Джемисон окончательно развенчал миф о «плоской рыбе Триеста». Во-первых, точно известно, что реальные плоские рыбы, такие как скат или камбала, живут на мелководье. Во-вторых, маловероятно, чтобы батискаф опустился прямо на рыбу: согласно статистике ловушек, с глубиной среднее время прибытия первой рыбы к ним увеличивается и достигает десяти часов на почти 11 километрах. «Триест» пробыл на дне 20 минут, и ловушек с наживкой у него не было.
Главный же аргумент против — слишком сильное гидростатическое давление. По-видимому, оно делает невозможным обитание рыб на глубине свыше 8,5 километра. Но чтобы существовать даже на этой отметке, как выяснилось, нужно значительно поменять организм.
Ученые оценили последствия тепловой бомбы в Тихом океане
24 марта 2019, 08:00
Псевдолипарис устанавливает рекорд
Долгое время самыми глубоководными считались ошибневые рыбы из класса лучеперых. Их вид Holcomycteronus profundissimus вылавливали с шести километров. В 1970-е рекорд был побит глубоководной бротулой (Abyssobrotula galatheae) из того же семейства, выловленной в океаническом желобе Пуэрто-Рико на отметке 8370 метров. Однако уже упомянутый Джемисон засомневался и в этом. По данным регистра рыб, есть 17 образцов этого вида бротулы, из которых только два добыты на большой глубине, так что возможна ошибка и самое глубоководное позвоночное существо еще предстоит открыть.
Пока же рекордсменом считается марианский морской слизень Pseudoliparis swirei. В 2013 году его поймали китайские исследователи при тестовом спуске батискафа на глубину семь километров. В 2017-м американцы подняли несколько десятков этих рыб с глубины 8178 метров.
Это небольшие рыбки длиной до 28 сантиметров, весом не более 200 граммов. У них прозрачная кожа, покрытая слизью, через которую просвечивают внутренние органы, на голове два маленьких черных глаза. Они абсолютно слепы и не реагируют на подсветку ловушек.
Этот вид псевдолипарисов стоит на вершине пищевой цепочки глубоководной части Марианской впадины, у него нет врагов, а еды в избытке, ведь на дне водится множество рачков.
Компанию псевдолипарисам на глубине составляют несколько видов рыб из семейств бельдюговых, ошибневых и долгохвостов.
CC BY 4.0 / Thomas D. Linley et al. / Deep-Sea Research Part I, 114 + (2016) 99-110. doi:10.1016/j.dsr.2016.05.003 / Pseudoliparis swirei — самая глубоководная рыба, известная на сегодня. Она кормится у ловушки на глубине 7415 метров
CC BY 4.0 / Thomas D. Linley et al. / Deep-Sea Research Part I, 114 + (2016) 99-110. doi:10.1016/j.dsr.2016.05.003 /
Pseudoliparis swirei — самая глубоководная рыба, известная на сегодня. Она кормится у ловушки на глубине 7415 метров
Ученые обнаружили глубоководные мутации
Все больше данных о том, что к обитанию на большой глубине — без света, в холоде — организм должен быть особым образом приспособлен. Новейшие методы исследования генома позволили ученым приоткрыть здесь завесу тайны.
Например, оказалось, что с глубиной в тканях костных рыб увеличивается количество триметиламиноксида — простого органического соединения, помогающего клетке не потерять форму и справиться с внешним давлением. Такие вещества называют осмолитами.
Есть также данные о том, что клеточные белки из-за большого давления теряют форму, а это смертельно для живых существ. Значит, должен быть механизм, не допускающий этого. Так появилась гипотеза о пьезолитах — растворимых веществах, удерживающих форму белков или даже собирающих их вновь, если они разрушились.
В недавней статье в Nature китайские ученые представили результаты расшифровки генома марианского псевдолипариса и сравнили его с геномом обычного липариса Танака. Два вида разошлись примерно 20 миллионов лет назад.
Генофонд глубоководной рыбы оказался более разнообразным, причем примерно 55 тысяч лет назад их популяция резко разрослась. Сам же геном на 22 процента больше генома липариса Танаки и содержит меньше мутаций.
© Источник: Kun Wang, Yanjun Shen, […]Shunping He. Nature Ecology & Evolution (2019)Марианский псевдолипарис (наверху) и липарис Танака. Глубоководный вид совершенно потерял окраску и приобрел прозрачную кожу, у него не полностью минерализован скелет
© Источник: Kun Wang, Yanjun Shen, […]Shunping He. Nature Ecology & Evolution (2019)
Марианский псевдолипарис (наверху) и липарис Танака. Глубоководный вид совершенно потерял окраску и приобрел прозрачную кожу, у него не полностью минерализован скелет
Одна из главных особенностей — низкая скорость метаболизма у псевдолипарисов, они буквально медленно живут. Их самки производят меньше икры, но зато она более крупная.
У марианского псевдолипариса не весь скелет окостеневший, по большей части он из хрящей. Вероятно, это вызвано мутацией гена Gla, досрочно прекращающего кальцинирование костей.
Выяснилось, что рыбы потеряли несколько важных фоторецепторов. Они не различают цвета и не улавливают свет. Они утратили ген пигментации mc1r, вот почему они бесцветны — окраска для них теперь лишнее.
Несколько мутаций помогли им улучшить метаболизм жирных кислот. У псевдолипарисов обнаружилось 15 копий гена acaa1, регулирующего синтез докозагексаеновой кислоты — одной из омега-3 жирных кислот. Есть мутации в генах tfa и slc29a3, отвечающих за перенос ионов и растворов из клетки. Все это явно направлено на то, чтобы сделать липидные мембраны клеток более эластичными и проницаемыми.
Возможно, некоторые мутации у псевдолипариса увеличивают синтез триметиламиноксида в тканях для сохранения формы белков. Ученые обнаружили еще одно странное отличие — в гене hsp90 произошла замена аминокислот, причем на очень консервативном участке, который неизменен у человека, мышей и даже дрожжей. Этот ген отвечает за синтез высокомолекулярного шаперона, который, в свою очередь, участвует в свертке более двух сотен белков, важных для клеточных процессов. Что делает эта мутация, пока неизвестно.
Авторы работы отмечают, что марианским псевдолипарисам пришлось адаптироваться к новым условиям жизни всего за несколько миллионов лет. Для эволюции позвоночных это малый срок.
Ученые раскрыли геологические секреты дна Марианской впадины
15 ноября 2018, 14:55
Наше новое место обитания?
Марианская впадина населена многочисленными видами беспозвоночных животных, бактерий, грибков, вирусов. К примеру, на глубине свыше пяти километров там обитают морские звезды вида Freyastera benthophila.
Китайские ученые расшифровали геном в их митохондриях — это кольцеобразная ДНК, состоящая всего из нескольких десятков генов. Зато много ее копий в каждой клетке организма. В целом он оказался похожим на митогеном других морских звезд с некоторыми исключениями, которые еще ждут своего объяснения.
Изучен также митогеном бокоплава — крошечного рачка, поднятого с глубины почти 11 километров. Этот вид появился 109 миллионов лет назад и эволюционировал медленно. За время обитания на глубине у него в митохондриальном гене обнаружено всего несколько особенностей, таких же, как у других глубоководных видов (в частности, совершенно другая компоновка генов в ДНК).
Еще одно открытие — на дне Бездны Челленджера обнаружилась колония бактерий, поедающих углеводороды. Причем плотность их населения там больше, чем где бы то ни было на Земле. Это организмы родов Oleibacter, Thalassolituus и Alcanivorax. Они есть и на поверхности, и тоже питаются углеводородами. Вопрос в том, откуда органика на такой глубине. Ученые полагают, что она не осела с поверхности, а произведена какой-то другой группой еще не известных науке глубоководных микроорганизмов.
Марианский желоб образован в результате тектонических процессов. В этом месте большая Тихоокеанская плита земной коры «ныряет» под небольшую Марианскую плиту, образуя впадину длиной 2550 и шириной 70 километров. Здесь очень высокая сейсмичность, а пищевые ресурсы и условия обитания резко отличаются от менее глубоких зон. Неизвестно даже, есть ли там сезоны года.
Мы очень мало знаем о Мировом океане, а его глубоководные части, по сути, только начали исследовать. Но пришло время делать это активнее, учитывая, что в перспективе маячит глобальное потепление климата и на поверхности через пару веков может оказаться слишком жарко.
Марианская впадина оказалась одним из самых грязных мест на Земле
21 июня 2016, 18:18
О Марианской впадине — Экспедиция DEEPSEA CHALLENGE
В то время как тысячи альпинистов успешно покорили Эверест, самую высокую точку на Земле, только два человека спустились в самую глубокую точку планеты, в бездну Челленджера в Марианской впадине Тихого океана.
Марианская впадина, расположенная в западной части Тихого океана к востоку от Филиппин и в среднем примерно в 124 милях (200 км) к востоку от Марианских островов, представляет собой шрам в форме полумесяца в земной коре протяженностью более 1500 миль (2550 км). в длину и 43 мили (69километров) в ширину в среднем. Расстояние между поверхностью океана и самой глубокой точкой впадины — Бездной Челленджера, которая находится примерно в 200 милях (322 км) к юго-западу от американской территории Гуама, — составляет почти 7 миль (11 км). Если бы гору Эверест сбросили в Марианскую впадину, ее вершина все равно находилась бы под водой более чем на 1,6 километра.
Марианская впадина является частью глобальной сети глубоких желобов, пересекающих дно океана. Они образуются при столкновении двух тектонических плит. В точке столкновения одна из плит погружается под другую в мантию Земли, образуя океанскую впадину.
Впервые глубины Марианской впадины были исследованы в 1875 году британским кораблем H.M.S. Challenger в рамках первого глобального океанографического круиза. Ученые Challenger зафиксировали глубину 4475 саженей (около пяти миль или восьми километров) с помощью утяжеленной измерительной веревки. В 1951 году британское судно H. M.S. Challenger II вернулся на место с помощью эхолота и измерил глубину почти 7 миль (11 километров).
Большая часть Марианской впадины в настоящее время является охраняемой зоной США как часть Морского национального памятника Марианской впадины, установленного президентом Джорджем Бушем-младшим в 2009 году.. Разрешения на исследования памятника, в том числе в Глубине Сирены, были получены от Службы рыболовства и дикой природы США. Разрешения на исследования в Глубине Челленджера были получены от Федеративных Штатов Микронезии.
ИСТОРИЧЕСКОЕ ПОГРУЖЕНИЕ
Из-за своей огромной глубины Марианская впадина окутана вечной тьмой, а температура всего на несколько градусов выше нуля. Давление воды на дне траншеи составляет восемь тонн на квадратный дюйм, что примерно в тысячу раз превышает стандартное атмосферное давление на уровне моря. Давление увеличивается с глубиной.
Первый и единственный раз люди спустились в Бездну Челленджера более 50 лет назад. В 1960 году Жак Пикар и лейтенант Дон Уолш достигли этой цели на подводном аппарате ВМС США, батискафе под названием Trieste . После пятичасового спуска пара провела на дне всего 20 минут и не смогла сделать никаких фотографий из-за облаков ила, поднятых во время их перехода.
До исторического погружения Пиккара и Уолша ученые спорили о том, может ли жизнь существовать при таком экстремальном давлении. Но внизу 9Прожектор 0009 Trieste осветил существо, которое Пиккард принял за камбалу, момент, который Пиккар позже с волнением опишет в книге о своем путешествии.
«Здесь, в одно мгновение, был ответ, который биологи задавали на протяжении десятилетий», — писал Пикар. «Может ли существовать жизнь в величайших глубинах океана? Это могло бы!»
ОЖИДАНИЕ В ГЛУБИНЕ
Хотя экспедиция Trieste развеяла любые сомнения в том, что в Марианской впадине может существовать жизнь, ученые до сих пор очень мало знают о типах организмов, которые там обитают. На самом деле, некоторые задаются вопросом, была ли рыба Пиккара формой морского огурца. Считается, что давление настолько велико, что кальций не может существовать иначе, как в растворе, поэтому кости позвоночных буквально растворяются. Ни костей, ни рыбы. Но природа также неоднократно доказывала, что ученые ошибались в прошлом своей замечательной способностью к адаптации. Так есть ли рыба на такой глубине? Никто не знает, и в этом весь смысл DEEPSEA CHALLENGE , чтобы найти ответы на такие фундаментальные вопросы.
В последние годы глубоководные земснаряды и беспилотные подводные лодки мельком видели экзотические организмы, такие как креветкоподобные амфиподы, и странных полупрозрачных животных, называемых голотуриями. Но ученые говорят, что есть много новых видов, ожидающих открытия, и много оставшихся без ответа вопросов о том, как животные могут выжить в этих экстремальных условиях. Ученых особенно интересуют живущие в траншеях микроорганизмы, которые, по их словам, могут привести к прорыву в биомедицине и биотехнологии.
Микроскопические обитатели Марианской впадины могут даже пролить свет на зарождение жизни на Земле. Некоторые исследователи, такие как Патриция Фрайер и др. из Гавайского университета, предположили, что змеевидные грязевые вулканы, расположенные вблизи океанских впадин, могли обеспечить подходящие условия для первых форм жизни на нашей планете. Кроме того, изучение горных пород из океанских впадин может привести к лучшему пониманию землетрясений, которые вызывают мощные и разрушительные цунами, наблюдаемые в Тихоокеанском регионе, говорят геологи.
БОЛЬШЕ О МОРСКИХ ОХРАНЯЕМЫХ РАЙОНАХ:
Экспедиции в нетронутые моря
Фотогалерея: Морские охраняемые районы США
Исследование Марианской впадины — Институт океана им. Шмидта
Самые глубокие участки моря — одно из последних границы. В основном это связано с тем, что отсутствие поддержки необходимых технологических достижений и транспортных средств серьезно ограничило доступ к глубинам более 7000 метров.
Но ситуация, наконец, начинает меняться, и СОИ помогает продвигать этот процесс вперед. В ноябре институт сотрудничал с группой биологов и геологов, работающих на борту НИС 9.0009 Falkor для проведения нового исследования одного из самых глубоких мест в мире.
Команда развернула новые спускаемые аппараты SOI для погружения на всю глубину океана – рамы, оснащенные камерами, датчиками и устройствами для сбора проб, которые автоматически возвращаются на поверхность после установленного времени нахождения на морском дне, – а также три других спускаемых аппарата в Сирене Марианской впадины. Глубоко, недалеко от Гуама. Работа на глубине почти до 11 000 метров поможет ответить на непреходящие вопросы о биологии таких инопланетных зон, в том числе о том, кто там живет и как они выдерживают огромное давление. Исследование должно также улучшить понимание процессов, которые контролируют образование землетрясений и цунами, среди других геологических целей. И, конечно же, из-за того, что в траншее было проведено так мало исследований, не обошлось без сюрпризов.
Показать больше
Рейсовый журнал
Данные и публикации
Полученный набор бортовых данных хранится на Rolling Deck в хранилище и теперь доступно.
Данные ADCP курируются и архивируются Гавайским университетом.
Результирующий набор батиметрических данных многолучевого картографирования Марианской впадины с использованием НИС
Falkor Kongsberg EM302 и EM710 хранится в Системе морских геолого-геофизических данных Междисциплинарного альянса данных о Земле (IEDA:MGDS). Эти данные также хранятся в Национальном центре экологической информации NOAA (NCEI). Вы можете просмотреть все наборы данных Falkor , используя кнопку «Фильтровать опросы» на левой боковой панели.
Биологические и геологические образцы: таблица коллекций биологических и геологических образцов, полученных во время круиза FK141109 по Марианской впадине.
Коллекции
амфипод, рыб, другой мегафауны, горных пород и отложений хранятся в Управлении по управлению данными биологической и химической океанографии.
Набор данных по лечению новых видов
Eurythenes Plasticus доступен здесь. (2016). Рыбы хадальской зоны, включая новые виды, наблюдения на месте и учет глубины хадальских улиток. Глубоководные исследования, 114, 99-110. DOI: 10.1016/j.dsr.2016.05.003. [Эта публикация доступна в ОТКРЫТОМ ДОСТУПЕ].
Анна Б. Даунинг, Джемма Т. Уоллес, Пол Х. Янси (2018 г.). Органические осмолиты амфипод от литорали до хадальных зон: увеличивается с глубиной в N-оксиде триметиламина, сцилло -инозитоле и других потенциальных противодействующих давлению веществах. Глубоководные исследования, часть I: документы океанографических исследований. DOI/10.1016/j.dsr.2018.05.008
Чжан В., Тянь Р.-М., Сун Дж., Бугуффа С., Дин В., Цай Л., Лан Ю., Тонг Х., Ли Ю., Джеймисон А., Байич В.-Б., Дразен Дж., Бартлетт Д. и П.-Ю. Цянь. (2018). Редукция генома в Psychromonas видов в кишечнике амфипода из самой глубокой точки океана. mSystems 3 (3), doi: 10.1128/mSystems.00009-18. [Эта статья была опубликована как ОТКРЫТЫЙ ДОСТУП].
В новостях
Исследователь из НГУ Часть команды по устранению потенциальных рисков для морской жизни, связанных с глубоководной добычей полезных ископаемых
Newswise • 9 июля 2020 г.
Научный сотрудник НГУ в составе группы по устранению потенциальных рисков для морской жизни, связанных с глубоководной добычей полезных ископаемых
Дайджест новостей здравоохранения • 9 июля 2020 г.
Ученые предупреждают о масштабных воздействиях на средние слои воды вокруг глубоководной добычи полезных ископаемых Сайты
Состояние планеты – Колумбийский университет • 8 июля 2020 г.
Исследование самой глубокой части океана
Морское радиошоу All Things • 18 ноября 2014 г.
Новый рекорд для самой глубоководной рыбы
BBC • 18 декабря 2014 г.
Как ученые обнаружили самую глубокую рыбу в истории
ABC News • 19 декабря 2014 г.
Институт океана Пало-Альто обнаружил новую рыбу
ABC News Сан-Франциско • 19 декабря 20 14
Морской призрак ! Ученые обнаружили самую глубокую живую рыбу
NBC News • 19 декабря 2014 г.
Новый рекорд: эфирная глубоководная рыба на глубине 5 миль под водой
LA Times • 19 декабря 2014 г. 0063
The Washington Post • 19 декабря 2014 г.
Самая глубокая рыба найдена на глубине 5 миль
USA Today • 19 декабря 2014 г. 19 января 2014 г.
Ученые только что открыли самые глубоководные виды рыб
Новости MTV • 19 декабря 2014 г.
Странный морской призрак побил рекорд самой глубоководной рыбы
New Scientist • 19 декабря 2014 г.
Необычно выглядящее существо побило мировой рекорд
Fox News • 19 декабря 2014 г.
Причудливо выглядящее существо побило мировой рекорд
NBC News – Северная Каролина • 19 декабря 2014 г.
В глубинах океана обнаружена неожиданная жизнь Trench
Национальный Общественный Радио (NPR) • 25 декабря 2014 г.
Самая глубокая рыба в мире
Canada Journal • 19 декабря 2014 г.
Видео показывает, как рыба-улитка плавает глубже, чем любое другое существо
The Independent • 19 декабря 2014 г.
Найдена самая новая в мире глубоководная рыба
Popular Science • 19 декабря 2014 г.
Обнаружены новые виды рыб
PBS News Hour • 19 декабря 2014 г. 9 0005
Новые виды, обнаруженные в Самая глубокая впадина на Земле
Science Daily • 20 декабря 2014 г.
Странная новая рыба на рекордной глубине 5 миль
Houston Chron • 20 декабря 2014 г.
Самая глубокая рыба в мире найдена в Тихом океане
The Telegraph • 20 декабря 2014 г.
Ученые открыли самую глубоководную рыбу в мире
Dehli Daily News • 21 декабря 2014 г.
Самая глубокая рыба в мире найдена в Марианской впадине • 22 декабря 2014 г.
Самая глубокая рыба с ангельскими крыльями, щупальцами и удивительной способностью действовать под давлением
Scientific American • 8 января 2015 г.
Самое глубокое место на Земле содержит «экстраординарные» уровни загрязнения
National Geographic • 2 февраля 2017 г.
В море есть более глубокая рыба
Новости UW • 28 ноября 2017 г.
Встречайте самую глубоководную рыбу в море: Марианская улитка, идентифицированная с помощью UW
GeekWire • Ноябрь 28 ноября 2017 г.